Prediction of function in protein superfamilies
نویسنده
چکیده
Assignment of function for enzymes encoded in sequenced genomes is a challenging task. Predictions of enzyme function can be made using clues from superfamily assignment, structure, genome context, phylogenetic conservation, and virtual screening to identify potential ligands. Ultimately, confident assignment of function requires experimental verification as well as an understanding of the physiological role of an enzyme in the context of the metabolic network.
منابع مشابه
FLORA: A Novel Method to Predict Protein Function from Structure in Diverse Superfamilies
Predicting protein function from structure remains an active area of interest, particularly for the structural genomics initiatives where a substantial number of structures are initially solved with little or no functional characterisation. Although global structure comparison methods can be used to transfer functional annotations, the relationship between fold and function is complex, particul...
متن کاملRebelling for a Reason: Protein Structural “Outliers”
Analysis of structural variation in domain superfamilies can reveal constraints in protein evolution which aids protein structure prediction and classification. Structure-based sequence alignment of distantly related proteins, organized in PASS2 database, provides clues about structurally conserved regions among different functional families. Some superfamily members show large structural diffe...
متن کاملSequence analysis Functional classification of CATH superfamilies: a domain-based approach for protein function annotation
Motivation: Computational approaches that can predict protein functions are essential to bridge the widening function annotation gap especially since <1.0% of all proteins in UniProtKB have been experimentally characterized. We present a domain-based method for protein function classification and prediction of functional sites that exploits functional sub-classification of CATH superfamilies. T...
متن کاملFunctional classification of CATH superfamilies: a domain-based approach for protein function annotation
MOTIVATION Computational approaches that can predict protein functions are essential to bridge the widening function annotation gap especially since <1.0% of all proteins in UniProtKB have been experimentally characterized. We present a domain-based method for protein function classification and prediction of functional sites that exploits functional sub-classification of CATH superfamilies. Th...
متن کاملProtein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches
DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...
متن کاملLength Variations amongst Protein Domain Superfamilies and Consequences on Structure and Function
BACKGROUND Related protein domains of a superfamily can be specified by proteins of diverse lengths. The structural and functional implications of indels in a domain scaffold have been examined. METHODOLOGY In this study, domain superfamilies with large length variations (more than 30% difference from average domain size, referred as 'length-deviant' superfamilies and 'length-rigid' domain su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2009